PLATO Ancillary Data Base

M. Deleuil Laboratoire d'Astrophysique de Marseille

PLATO Ancillary Data Base

WP 350 xxx

PLATO Instrument 300 000 Manager (P. Bodin) PDC Overall Management L. Gizon (PDPM) MPS 310 000 System Architecture and Management 320 000 MPS R. Burston Data Processing Algorithms 330 000 LESIA R. Samadi Data Processing Development MPS I. Pardowitz 340 000 Input Catalogue ASI P. Giommi 350 000 Ancillary Database Content Management LAM M. Deleuil 360 000 Exoplanet Analysis System N. Walton loΑ 370 000 Stellar Analysis System IAS T. Appourchaux 380 000 Data Analysis User Support MPS L. Gizon

M. Deleuil Laboratoire d'Astrophysique de Marseille

Why a Data Base?

1. Support to the light curves analyses

Why a Data Base?

1. Support to the light curves analyses

→ Help assessing the nature of the detected transiting body

Who's that transiting guy ...

Grazing binary

Low mass star

PLATO Input Catalog (PIC) will provide the Target's ID including :

- atmospheric parameters
- fundamental parameters : M_{\star} & R_{\star}
- others key parameters TBD by PIC

Who's that transiting guy ...

Grazing binary

Low mass star

PLATO Input Catalog (PIC) will provide the Target's ID including :

- atmospheric parameters
- fundamental parameters : M_{\star} & R_{\star}
- others key parameters TBD by PIC

Role of the Ancillary DB?

Different analyses = different results (most of the time...)

	Line depth	Ηα	Strömgren			Evolution tracks &		Spectral
	ratio	wings	indices		parallax		synthesis	
HD	$T_{\rm eff}$ [K]	$T_{\rm eff}$ [K]	$T_{\rm eff}$ [K]	$\log g$	[M/H] _{phot}	M/M_{\odot}	$\log g_{\pi}$	$v \sin i [\mathrm{km} \mathrm{s}^{-1}]$
Sun	5770(5)	—	5778 ^a	4.44 ^{<i>a</i>}	$+0.00^{a}$	1 <i>a</i>	4.44 ^{<i>a</i>}	2^{b}
43318	6191(17)	6100	6400	4.19	-0.15	1.23(17)	3.96(14)	8
43587	5923(8)	5850	5931	4.31	-0.11	1.02(20)	4.29(15)	2.5^{b}
45067	6067(6)	5900	6038	4.03	-0.22	1.08(17)	3.96(15)	<7 ^b
49434	—	6950	7304	4.14	-0.01	1.55(14)	4.25(11)	84
49933	—	6400	6576	4.30	-0.45	1.17(18)	4.20(14)	14
55057	—	6750	7274	3.61	+0.10	2.12(22)	3.66(12)	120
57006	6181(7)	6000	6158	3.72	-0.13	1.28(17)	3.58(16)	9
171834	—	6550	6716	4.03	-0.22	1.40(17)	4.13(13)	63
184663	-	6450	6597	4.25	-0.17	1.29(14)	4.19(15)	53
46304	—	7050	7379	3.93	-0.09	1.68(14)	4.18(11)	200
174866	–	7200	7865	3.86	-0.18	1.77(14)	3.86(15)	165

^{*a*} The fundamental parameters for the Sun are also given in the table, although we have not

determined its parameters; the exception is our estimate of T_{eff} from line depth ratios.

^b With the resolution of the ELODIE spectrograph ($R = 45\,000$) it is not possible to measure

 $v \sin i$ below 7 km s⁻¹ directly.

e.g. Bruntt et al., 2002

Role of the Ancillary DB?

Different methods = different results (also...)

HD	B-V	$P_{rot}(\mathbf{d})^{\mathbf{A}}$	$-log < R_{HK}^\prime >$	$t_{chrom}/{\rm Myr}$	$t_{iso}/{\rm Myr^B}$	$t_{gyro}/{\rm Myr}$	$\delta t_{gyro}/{\rm Myr}$
160346	0.96	36.4	4.795	2637		3280	490
$165341 {\rm A}^{\rm K}$	0.86	20	4.548	1091		1300	180
166620	0.87	42.4	4.955	4750	>11200	5400	860
178428	0.70	22	5.048	6616		2560	390
185144	0.80	27	4.832	3019		2730	410
187691	0.55	10	5.026	6128	3200	1250	210
190007	1.17	28.95	4.692	1832	< 1760	1460	200
190406	0.61	13.94	4.797	2657	3160	1610	250
194012	0.51	7	4.720	2019		900	170
201091	1.18	35.37	4.764	2359	<440	2120	300
201092	1.37	37.84^{L}	4.891	3753	<680	1870	260
206860	0.59	4.86	4.416	470	<880	237	33
207978	0.42	3	4.890	3740		1270	810
212754	0.52	12	5.073	7207		2300	440
$219834B^{M}$	0.91	43	4.944	4563	>13200	5040	800
224930	0.67	33	4.875	3538		6330	1080
	Barnes, 2007 ApJ						

The PIC will do choices and will provide the "best" value for the potential target's parameters

→The Ancillary Data Base will ingest the complementary data - when valuable

Content : catalogs

Existing catalogs identified as valuable by the PIC : photometric, astrometric ...

→ support to build the Input Catalog

→ support to light curve analysis - additional verifications on the target's properties

Content : spectra

- spectra - when available to allow additional verifications - if wished

Content : images

Images to help probing the target's environment & contaminants position + properties (magnitudes, variability)

Technical aspects ...

Role of the Ancillary DB II

2. Support of the follow-up observations

FUp observations will need input from

- the detection : transits parameters + ephemerides ...
- the input catalog : target coordinates, magnitude ...
- ▶ the Ancillary DB : contaminants, finding charts, Ca II index series ...

→ help the observations scheduling

Role of the Ancillary DB II

2. Support of the follow-up observations

→ regular updates during the mission life time :

+ general data (series of spectra, spectral range, S/N...)

+ parameters derived from analysis e.g. K(m/s), eccentricity ...

BJD^a	RV	$1-\sigma$ error	exp. time	S/N p. pix.			
-2400000	(km s ⁻¹)	(km s ⁻¹)	(s)	(at 550 nm)			
SOPHIE							
54314.40776	-37.6060	0.0490	3600	12.15			
54318.41015	-37.5454	0.0184	3600	17.00			
		HARPS					
54675.69652	-37.5050	0.0151	2700	9.20			
54678.66557	-37.4427	0.0101	2700	12.20			
54679.73180	-37.4751	0.0407	2700	4.60			
54682.68436	-37.4830	0.0112	2700	11.20			
54700.57459	-37.4756	0.0140	2700	8.90			
54703.59565	-37.4611	0.0169	2700	8.40			
54732.56202	-37.4687	0.0080	3600	14.50			
54733.58576	-37.4508	0.0077	3600	14.80			
54737.58497	-37.4955	0.0134	3600	10.30			
54987.78368	-37.4550	0.0237	3600	7.82			
54988.84456	-37.4482	0.0146	3600	10.92			
54989.83528	-37.4540	0.0098	3600	14.77			
54991.85115	-37.4979	0.0157	3600	10.74			
54992.80807	-37.4839	0.0106	3600	13.68			
54993.87346	-37.4610	0.0113	3600	13.30			
54998.85102	-37.5006	0.0106	3600	12.20			
55021.82951	-37.4656	0.0102	3600	14.22			
55045.74089	-37.4139	0.0148	3600	10.95			
55046.73467	-37.4888	0.0179	3600	9.47			

Ancillary DB - summary

Content of the DB will be defined in the forthcoming years

Could be anything you can dream of to support the PLATO data analysis... as long as valuable and sufficient in quality

Main contributors to the content definition :

- PLATO Input Catalog,
- Science Management
- Follow-up observations

Critical points :

- Interfaces are important
- Validation of the data to be ingested

Contributions/collaborations are welcome!

During PLATO observations : will gather results from FUp observations regular updates with observations & results

Long term : basis for statistical studies of planetary systems properties